Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plant roots dynamically respond to nitrogen availability by executing a signaling and transcriptional cascade resulting in altered plant growth that is optimized for nutrient uptake. The NIN-LIKE PROTEIN 7 (NLP7) transcription factor senses nitrogen and, along with its paralog NLP6, partially coordinates transcriptional responses. While the post-translational regulation of NLP6 and NLP7 is well established, their upstream transcriptional regulation remains understudied in Arabidopsis (Arabidopsis thaliana) and other plant species. Here, we dissected a known sub-circuit upstream of NLP6 and NLP7 in Arabidopsis, which was predicted to contain multiple multi-node feedforward loops suggestive of an optimized design principle of nitrogen transcriptional regulation. This sub-circuit comprises AUXIN RESPONSE FACTOR 18 (ARF18), ARF9, DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 26 (DREB26), Arabidopsis NAC-DOMAIN CONTAINING PROTEIN 32 (ANAC032), NLP6 and NLP7 and their regulation of NITRITE REDUCTASE 1 (NIR1). Conservation and divergence of this circuit and its influence on nitrogen-dependent root system architecture were similarly assessed in tomato (Solanum lycopersicum). The specific binding sites of these factors within their respective promoters and their putative cis-regulatory architectures were identified. The direct or indirect nature of these interactions was validated in planta. The resulting models were genetically validated in varying concentrations of available nitrate by measuring the transcriptional output of the network revealing rewiring of nitrogen regulation across distinct plant lineages.more » « lessFree, publicly-accessible full text available June 1, 2026
-
McMahon, Katherine (Ed.)ABSTRACT Most microbial life on Earth is found in localized microenvironments that collectively exert a crucial role in maintaining ecosystem health and influencing global biogeochemical cycles. In many habitats such as biofilms in aquatic systems, bacterial flocs in activated sludge, periphyton mats, or particles sinking in the ocean, these microenvironments experience sporadic or continuous flow. Depending on their microscale structure, pores and channels through the microenvironments permit localized flow that shifts the relative importance of diffusive and advective mass transport. How this flow alters nutrient supply, facilitates waste removal, drives the emergence of different microbial niches, and impacts the overall function of the microenvironments remains unclear. Here, we quantify how pores through microenvironments that permit flow can elevate nutrient supply to the resident bacterial community using a microfluidic experimental system and gain further insights from coupled population-based and computational fluid dynamics simulations. We find that the microscale structure determines the relative contribution of advection vs diffusion, and even a modest flow through a pore in the range of 10 µm s−1can increase the carrying capacity of a microenvironment by 10%. Recognizing the fundamental role that microbial hotspots play in the Earth system, developing frameworks that predict how their heterogeneous morphology and potential interstitial flows change microbial function and collectively alter global scale fluxes is critical.IMPORTANCEMicrobial life is a key driver of global biogeochemical cycles. Similar to the distribution of humans on Earth, they are often not homogeneously distributed in nature but occur in dense clusters that resemble microbial cities. Within and around these clusters, diffusion is often assumed as the sole mass-transfer process that dictates nutrient supply and waste removal. In many natural and engineered systems such as biofilms in aquatic environments, aggregates in bioremediation, or flocs in wastewater treatment plants, these clusters are exposed to flow that elevates mass transfer, a process that is often overlooked. In this study, we show that advective fluxes can increase the local growth of bacteria in a single microenvironment by up to 50% and shape their metabolism by disrupting localized anoxia or supplying nutrients at different rates. Collectively, advection-enhanced mass transport may thus regulate important biogeochemical transformations in both natural and engineered environments.more » « less
An official website of the United States government
